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Results from laboratory experiments on oscillatory flows over topography in a 
rapidly rotating cylinder of homogeneous liquid are presented and compared with 
weakly nonlinear and low-order theories. With periodic forcing, the motion can be 
either periodic or chaotic. In  the periodic regime, linear Rossby waves excited by the 
sloshing flow over shallow bottom topography become resonant a t  forcing frequencies 
that are integer multiples of the natural free Rossby wave frequency. As the 
topographic effect or the forcing amplitude is increased, the maximum response is 
shifted away from the linearly resonant frequency ; to higher periods for azimuthal 
topographic wavenumbers of 1 and to lower periods for topographic zonal 
wavenumbers exceeding 1, in agreement with theory. The simple theories which use 
slippery sidewalls do not describe the observed chaotic flows. These complex states 
are associated with the development of small-scale vortices in the sidewall boundary 
layer that  are shed into the interior. For both periodic and chaotic flows, long-time 
particle paths can contain significant chaotic components which are revealed in 
direct Poincare' sections constructed from observations of surface floats. 

1. Introduction 
The important geophysical problem of the nature of airflow over large-scale 

mountains has led to much previous work on the response of a rotating fluid when 
a steady zonal (eastward or westward) current is incident on a set of ridges or isolated 
bumps. For example, Charney & Devore (1979) and Hart (1979) showed that steadily 
forced flow over shallow hills could exhibit multiple stationary equilibria which were 
considered of potential significance for atmospheric blocking. Recent observations of 
coastal ocean currents driven by fluctuating surface wind stresses, for example by 
Denbo & Allen (1983), stimulated studies of the dynamics of periodically forced 
rotating systems with variable bottom topography. Haidvogel &, Brink (1986) used 
a numerical model to show that periodic wind stresses could produce a mean 
alongshore current in a homogeneous quasi-geostrophic fluid moving over a 
sinusoidal bottom. Samelson & Allen (1987) and Allen, Samelson &, Newberger (1991) 
studied the properties of periodically forced rapidly rotating flow over a set of long 
ridges using analytical methods. Again a retrograde mean current was predicted. In 
addition, a chaotic flow response was found for certain parameter settings. 

The present paper reports results from laboratory experiments on periodically 
forced quasi-geostrophic flow over topography in a rapidly rotating cylinder. Our 

t Current address: Shell Offshore Inc., PO Box 61933, Kew Orleans, LA 70160, USA. 
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FIGURE 1. Schematic view of the experiment. 

goals are to explore the utility of weakly nonlinear and low-order models in a 
geometrically simple and controlled setting, to study the transition between periodic 
and chaotic regimes while relating the latter to specific flow structures, and to 
investigate the nature of parcel trajectories, which may be chaotic even when the 
flow itself is periodic. The laboratory experiments provide data on expected flow 
regimes, and indicate that the viscous sidewall boundary layer, which is neglected in 
the theories, plays an important role in the observed Eulerian chaos. 

Figure 1 displays a schematic view of the apparatus used in the experiments. A 
polyvinylchloride cylinder of radius R = 22.54 cm contains a homogeneous water 
layer of mean depth D = 10.0 cm. The upper water surface is free and the bottom 
consists of a specific fixed topography. Two topographic functions were used. The 
simplest, both geometrically and from a fabrication point of view, is the uniform 
slope (hereafter denoted US) 

r* 
Ht = h,-Cos R ( O ) ,  (1) 

where r* is the radius and B is the polar angle measured from the crest in the direction 
of the basic rotation 0. The relative topographic amplitude h,/D is easily adjusted 
by changing the slope, but note that this azimuthal wavenumber- 1 function contains 
a wide spectrum of the basic radial modes of the linear theory which are simply 
Bessel functions of index 1 with zeros at r*/R = 1.0. 

An alternative wavenumber-:! form, hereafter denoted FB, is 
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where J, is the Bessel function of the first kind with index 2. The eigenvalue a,, = 
5.41 is chosen so that J, is zero a t  r* = R ( r  = 1 ) .  This single-wave Fourier-Bessel 
topography has the advantage that it is an eigenfunction of the linear theory. The 
construction of this surface is described in detail by Pratte (1990). Basically it is 
rough cast using DOW D.E.R. 331 resin then hand polished within 3 % of the desired 
shape. However, because the procedure was so time consuming, only one unit was 
made, with h, = 2.08 cm. Equation (2) describes one possible component of a general 
Fourier-Bessel decomposition of arbitrary topography which vanishes a t  the 
sidewall. 

Motion is driven by modulating the basic rotation rate SZ according to 

sl = SZ,(l+Ssin (w t ) ) .  (3) 

The rotation vector is parallel to the axis of the cylinder. The modulation 6 << 1 so 
that the motions have small flow Rossby number. That is, if 2Sl2,R is used as the 
relative velocity scale U ,  then the Rossby number R, = U/2Q0 R is equal to 6. The 
physical manifestation of (3) is obtained by using a geared-down stepper motor to 
control the rotation rate of the turntable upon which the cylinder is placed. The 
stepper motor is driven from a voltage-controlled oscillator with an output pulse rate 
that  is a function of a given sinusoidal input voltage. This latter signal is derived 
from a precision low-frequency oscillator. The output amplitude is then linearly 
related to S and the frequency is proportional to w. The stability of the driving 
system is about 0.001 of 0, with the errors being greater in S than in w. 

Under rotation the free surface becomes deformed into a parabola given, in a time 
average, by 

where g is the gravitational acceleration. This upper parabolic surface acts as a 
zonally (i.e. azimuthally) invariant form of topography which can be shown to be 
equivalent to  the p-effect of meterology and oceanography (cf. Hart 1972 ; Pedlosky 
1987). With respect to  the oceanographic problems mentioned above, the upper 
surface may be thought of as generating an alongshore-invariant deepening of the 
ocean layer as one moves towards r* = R. In  the quasi-geostrophic limit a fluid which 
shallows towards R is dynamically similar to one which deepens towards R, but with 
east and west reversed. 

We consider that  the external Froude number 

is small enough so that dynamical effects a t  the interface are negligible. The 
appropriate measure of vortex stretching via dynamic  free-surface deformations 
compared to the time-rate-of-change of relative vorticity is HT/ai,, where a,, is the 
mode number of the Rossby wave excited by the topography. Because > 13 for 
all our experiments, and HT is typically about 0.2, the assumption that the interface 
is dynamically fixed is justified. However, the topographic p-effect arising from the 
large static parabola (4) is very important because i t  forces a stretching of fluid 
columns that move radially. 

Table 1 lists the relevant dimensional and non-dimensional parameters for the 
experiments. There are five independent non-dimensional parameter groups which 
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D = 10.0 em 
R = 22.54 cm 
p = 1.00 g/cm3 
v = 0.01 cm2/s 
g = 980 cm2/s 
SL, = 2.85 radls 
w (rad/s) 
7 (s) 

Dimensional parameters 
mean layer depth 
radius of cylinder 
fluid density (water) 
kinematie viscosity 
gravitational accderation 
mean rotation rate (unless otherwise stated) 
forcing frequency 
forcing p r i o d  

C'oordinatw 
non-dimensional radius. scaled by fi 
polar angle in direction of rotation 
radial velocity. sraled by Ro 
azimuthal velocity. scaled by R u  
time. scaled by (,)rl 

Xon-dimensional parameters 
azimuthal wavenumber of the topography 
nzth radial eigenvalue of the topographr 
forcing amplitude or flow Rossby number 
frequency Rossby number 
vertical Ekman number 
lateral Ekrnan number 
external Froude number (upper surfact height) 
bottom surface height 
bottom friction 
planetary vorticlity gradient (/l-rfect) 
rortlcity advertion 
topographic forving 

TABLE 1 .  Basic parameters and scaling for the experirnents and the model 

appear explicitly in the equation of motion. (8) .  and an investigation of a largc 
volume of parameter space is therefore impractical. In  this study we have chosen to 
fix several of the variables a t  geophysically relevant sizes and vary those which are 
most easily manipulated ; the modulation frequency and amplitude, and to  a lesser 
extent the topography. Thus. E ,  E L ,  and H ,  are fixed while the other parameters Q ,  
/I, /IT, and S vary as e and 6 are changed. Details on the measurement techniques will 
be given as the data are presented. The rest of the paper is organized as follows. 
Section 2 contains a brief review of the weakly nonlinear and low-order theories. 
Section 3 discusses the periodic flow response. while $4 describes the transition 
between periodic and chaotic flows. Section 5 provides data  on parcel trajectories as 
visualized by tracking surface floats. The conclusions are found in $6. 

2. Review of the theory 
In  this section we briefly summarize the formulation and predictions of two models 

for the motion in the cylinder. Both start from the one-layer quasi-geostrophic 
vorticity equation written in coordinates attached to the cylinder and rotating with 
the modulated rotation rate 0. Because the Rossby numbers (i.e. S and e) are small. 
the motion is horizontal and two-dimensional to lowest order. Although the 
coordinates are modulating, the modulation just leads to  sinusoidal source of vertical 
vorticity, uniform in space. This can be balanced, for small friction. by a simple solid- 
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body sloshing motion. The total velocity relative to coordinates attached to the 
modulating cylinder is then given non-dimensionally by 

6r aY v = --sin ( t )  +--, 
2e ar 

for the azimuthal and radial components, respectively. The stream function Y(r. 8, 
t )  is proportional to the geostrophic pressure and represents disturbances to  the basic 
sloshing motion. The geostrophic balance expressed in (6) and (7)  represents a 
balance between pressure gradients and mean Coriolis forces associated with the 
dominant time-averaged component of the basic rotation 8. 

The basic oscillatory solid rotation represented by the first term on the right-hand 
side of (6) is obtained from the full vorticity equation in coordinates attached to the 
cylinder in the limit as Q becomes small (Hart 1990). In the experiments reported in 
this paper, Q = (vSZ,)i/Dw is typically of order or less than 0.1, a value obtained, for 
example, with D = 10 em, SZ, = 2.85 rad per s, v = 0.01 cm2 s-’, and a forcing period 
of 40 s. The basic state including the effects of Ekman bottom friction will be phase 
shifted in time by an amount of order Q ,  with an amplitude 1/( 1 + Q’) x 1 times that 
shown in (6 ) .  

The deviation from the solid-body sloshing motion is governed by the quasi- 
geostrophic vorticity equation 

HJ’( r ,8 ) -H, r2  ] = -&V2Y+%V4Y. (8) 
at 2e E e ,V2Y+ 

Sr2 sin ( t )  

This is obtained by expansion in the small parameter 6. The Jacobian advection 
operator 

and f ( r ,  8) is the non-dimensional topography structure function (e.g. r cos (0)). The 
basic physical effects are advection of potential vorticity (relative vorticity plus fluid 
column depth) by the sloshing motion, advection by the resulting flow disturbance 
itself, Ekman bottom friction (the first term on the right), and lateral diffusion of 
relative vorticity (the last term on the right). 

A more detailed derivation of (8) is given in Hart (1990) who presents a weakly 
nonlinear, hereafter denoted WNL, theory based on this equation. The WNL model 
neglects sidewall friction and replaces the real no-slip outer wall boundary condition 
with that of no normal flow only. This simplification is typical of all the models 
discussed in the introduction. By comparing theory with experiments, Hart (1972) 
showed that such a theory does a good job a t  describing weakly nonlinear two-layer 
motions associated with baroclinic instability provided that E L  is small. Whether or 
not viscous sidewall effects are important a t  finite amplitude is a subject that is 
addressed here experimentally. Numerical modelling of the full equation (8), with 
lateral friction and a rigid wall at r = 1 ,  is quite difficult for the parameter settings 
of interest, and experiments provide useful data on the behaviour of the real fluid 
system. 

F1.N 229 
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Hart (1990) considers one spectral topographic component a t  a time. The linear 
motion is normally of amplitude O(S) ,  which is presumed small. However, the linear 
theory becomes resonant (with amplitudes of order SQ-’, which may be large) a t  all 
p = j, where j is an integer. This linear resonance occurs when the frequency of 
forcing is equal to an integer multiple of the natural frequency of a Rossby wave with 
the spatial structure of the bottom topography (i.e. a given wavenumber n and radial 
eigenvalue anm). In  order to determine what happens when nonlinearity and 
dissipation compete with forcing in near-resonant conditions, the WNL theory 
expands the stream function Y as 

Y =  (TYl+(T2Y2+cr3Y3+ . . . ,  (9) 

Yl = Re (A(t’) eiX(t)Jn(ol,, r ) ) ,  (10) 

with x = Pt +Pq cos ( t )  +no. A weakly nonlinear cascade then finds the slow-time (t’) 
amplitude equations for A by expansion and removal of secularities. In this model 
i t  is assumed that /3 = j + A ,  A x v2, and Q x cr2. It is found that the correction field 
Y2 consists solely of a time-independent retrograde zonal flow component. 

The conclusions from the WNL model relevant to the present laboratory study are 
(i) The solutions of the three ordinary differential equations describing the slow- 

time behaviour always fall onto a fixed point, leaving a fast-time spatially wavy 
oscillation of constant amplitude along with a second-order retrograde mean zonal 
flow proportional to 

(ii) The resonance curve, which for the linear model is centred on p = j, is bent by 
nonlinear effects. The peak Y response is shifted off of p = j by an amount A,,, = 
A,,, (S ,  q, Q,j ,  b, ) ,  where b,  is a wave-mean interaction integral tabulated in WNL. 
The qualitatively significant finding is that single-humped topographies of 
wavenumber n = 1 (like (1 ) )  have a super-resonant peak response ( A  > 0, or period 
T higher than that required for linear resonance), while topographies with 
wavenumbers higher than 1 (like (2)) have a subresonant peak response ( A  < 0, or 
period T lower than that required for linear resonance). 

(iii) There is a small region of parameter space where multiple steady solutions for 
A(t’) can exist for the same external parameters. These were shown to occur on a 
parameter plane with coordinates 

where (T = S; 4 1 .  The solution for the resonant mode is 

Three solutions, two of which are stable, are found inside a nearly triangularly 
shaped region with vertices a t  [(0, O ) ,  ( -4/27,0),  (-8/27,1/3)]. Outside this 
‘triangle’, one solution is predicted. (In Hart 1990 the terms in (35) and (36) 
involving (3p2/S2- 1 )  were misprinted, and should be raised to the 3 and 1.5 powers 
in the respective equations.) 

Although the WNL model successfully demonstrates that the origin of the mean 
zonal current is through the action of bottom form drag in association with the 
asymmetry of Rossby wave propagation, it substantially overestimates its 
magnitude for all but the most small of S-values. This feature causes the WNL model 
to fail in its description of the laboratory experiments for most of the parameter 
domain studied here. We have found that a low-order model (dcnoted LO), which 
includes the interaction of the induced zonal current with the topography, gives a 
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superior description of the experimental results. In  summary, the sloshing induced 
by the modulation of the basic rotation of the tank generates a Rossby wave motion 
when going over the seamounts. These waves rectify to generate a correction to the 
sloshing. This zonal flow correction (which includes a retrograde mean component) 
itself flows over the topography to produce a correction to the wave field. This latter 
effect is scaled out of the weak interactions in the WNL model (consistently so for 
small s;). 

The derivation of the alternative LO model is straightforward. The topography is 
assumed to consist of a single Fourier-Bessel eigenfunction Jn(anm r ) .  The stream 
function Y is written as 

Y = [ X ( t )  cos (no) + Y(t) sin (no)] J,(anm r )  +Z(t) @ ( r ) ,  (12) 

where 

is the self-consistent zonal jet forced by the single-wave self-interactions. Like the 
solutions of the WNL model, this wave and zonal current have no flow through the 
wall a t  r = 1,  but the azimuthally wavy field does not satisfy no-slip there. Equation 
(12) is substituted into (8), with E L  set to zero, and the nonlinear terms are projected 
onto the three fundamental spatial modes that have amplitudes X, Y ,  and 2. Non- 
zero projections outside this limited set (which do exist) are truncated. This 
procedure yields three first-order nonlinear differential equations : 

(14) 
dx 
- = -QX+p( l+rs in ( t ) )Y -nC,YZ ,  
dt 

The interaction integrals are 

with 

nHl3 dZ 
- = - Q Z +  - Y.  dt 2€ 

For the F B  topography with n = 2 and m = 1,  K ,  = 0.536 and K ,  = - 10.70. 
Equations (14)-(16) are identical in form to those studied by Samelson & Allen 

(1987, equations 2.11), if their zonal flow U is decomposed into an externally forced 
oscillatory part and a zonal flow correction. They considered anisotropic topography, 
where the low-order truncation becomes asymptotically accurate in the limit of long 
ridges oriented perpendicular to the zonal current. Because of this different 
geometry, the numerical values of thc externally controlled coefficients in each term 
are not the same as obtained for our experimental conditions, but the fundamental 
dynamical processes represented are similar. The infinite ridge top( yraphy is 

4.2 
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somewhat ungeophysical and difficult to produce in the laboratory. Even though our 
topography is not anisotropic, in applying this model to our problem we find that for 
a substantial range of parameters the neglect of higher wave-wave interactions has 
little effect, and that model is dramatically better than the WNL one. We shall, 
however, show examples where the single-wave truncation (12) does lead to a failure 
of the low-order model. 

The linear model of Hart (1990) can be recovered from (14)-(16) by dropping all 
nonlinear terms as well the last term on the right of (15). The WXL model can be 
obtained by performing the slow-time expansion about the linear mode with C, = 0. 
Indeed the last term on the right of (15) represents precisely the effect of the 
nonlinearly induced zonal current in producing a correction to the wave field, 
whereas the last term in (16) represents the topographic form-drag effect responsible 
for the generation of the zonal flow correction itself. 

The LO and WNL models give similar results as S + 0. However, for 'moderate ' 
S (Si about 0.1 or greater), the resonance curve bending and regions of multiple 
equilibria can be substantially different. For example, the multiple resonances which 
lead to substantial responses at most integer values of /3 in WNL are not always 
found in LO, especially a t  small 6 where only the lowest /3 = 1 resonance peak rises 
above the background in LO. Further differences in the models will become apparent 
as they are compared with the laboratory data. 

3. The periodic flow regime 
The flow v(r ,  t ) ,  distinct from the Lagrangian particle paths obtained by integrating 

drldt = v ,  can either be periodic or chaotic. We first discuss the periodic regime 
because it is directly comparable with the theories of $2  that exhibit periodic 
solutions. That is, the WNL slow-time equations evolve to stable fixed points, 
leaving a periodic motion given by (10) with A constant. Xumerical LO model 
solutions appear to become periodic after initial transients decay away for all 
parameters even remotely accessible experimentally. The parameter limits of the 
experimental periodic regimes and the domains of Eulerian chaos will be given in $4. 

Experimental data on the flow were obtained by using a hot-thermistor 
anemometer located a t  a fixed point just below the upper free surface. Heat carried 
away from the probe by the motions causes a resistance change proportional to the 
local fluid velocity. Because the thermistor bead is spherical, the response is 
omnidirectional and we assume that the signal corresponds primarily to the speed of 
the dominant two-dimensional flow as given by (6) and (7 ) .  Calibration was 
repeatedly achieved using step changes in turntable rotation with a flat bottom 
inserted in the tank. The thermistor is inserted from above and has a diameter of 
about 0.7 mm, producing negligible disturbance to the motion. For most of the 
following discussion the probe is at r = 0.50, and 6' = 5.7 rad (FB topography) or 
6' = 1.6 rad (US topography). Although the detailed time traces are dependent on 
probe position, the qualitative state of the fluid globally is captured a t  this single 
location. Pratte (1990) describes additional data from other probe positions. The 
data are logged into a computer using a 16-bit digitizer. Each run was started either 
from a previous state or from rest, with a 10 to 20 min transient decay time before 
data were taken. It was observed that the asymptotic endstate of all experiments 
with topography was achieved very rapidly, in several forcing cycles. The tank was 
covered with a lid to minimize evaporation and wind stress effects. 

Figure 2 shows typical cxperimental and theoretical time series for the speed a t  the 
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FIQURE 2 .  Time traces from the speed probe for US topography with H ,  = 0.05 and 6 = 0.02. 
Experimental: (a )  T = 40.0 s ,  ( b )  7 = 43.7 s ;  WNL model: (c) T = 40.0 S ,  ( d )  7 = 43.7 s. 

probe with a small US topography. The signals contain harmonics which result from 
the advection of vorticity by the sinusoidal basic sloshing (the 7 sin ( t )  terms in (14) 
and (15), see also the solutions in Hart 1990 for the WNL model). The comparison 
between theory and experiment is not exact because the WNL model does not 
displace the resonance peak to as supercritical a value of the forcing period as is 
observed. However, the waveforms at  the respective resonance peaks (figures 2 b and 
2 c )  have nearly equal amplitudes and means. The theoretical one shows more second 
harmonic in the troughs, but experiments and modelling show this aspect of the time 
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FIGURE 3. Average speed per cycle versus forcing period for US topography and *, S = 0.01, 
H ,  = 0.02; +, S = 0.02, H ,  = 0.05; -, WNL model. 

T (S) 

FIQURE 4. Average speed per cycle versus forcing period for FB topography with 6 = 0.005 : 
+, experimental runs; .-.-.- , WNL model; -, LO model. 

series is sensitive to precise probe location. Insofar as the theory does not have a 
viscous sidelayer a t  r = 1, the effective probe location for the experiment, which 
does, may be somewhat different. The overall response for flow over a shallow slope 
is summarized in figure 3. The linear resonance point is at i- = 37.5 s. The WNL 
model is strictly valid near resonance as i t  is an expansion for p = j+ A ,  where A is 
assumed of order Si << 1. At the linear resonance (7 = 37.5), St z 0.04 for the 6 = 0.02 
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FIGURE 5. Time traces from the speed probe for FB topography with 6 = 0.005 and 7 = 20.0 s 
( E  = 0.55) for (a )  experiment, ( b )  WNL model, (c) LO model. 

case. At near-resonant 7 the curve amplitudes and shapes are similar, although the 
model underpredicts the resonance peak shift. Off the resonance, one should take 
account of the fact that  the US topography forces motions at more than one radial 
mode. Because both the WNL and LO models are based on just a single wave they 
do not reproduce the tails of the curves very well. 

Figure 4 shows a comparison with the single-wave FB topography a t  small 8. For 
this topography with wavenumber n = 2 the linear resonance a t  /3 = 1 occurs a t  7 = 
34.7 s. The peak response is now subresonant as forecast by both the WNL and LO 
models. The data fit the predictions of the LO model fairly well, especially a t  
subresonant and near-resonant values of 7, but the WNL theory completely 
overestimates the resonant peak and predicts multiple equilibria that  are not 
observed. Although the values of S x 0.01 are similar to those in figure 3, in the WNL 
model the amplitude of the zonal correction Y2 a t  7 x 24 s is ten times bigger than 
for the slope case because the other parameters (specifically ,u and 5) are different. 
This large value of Y2 leads to a divergence in the series (9) in which the higher-order 
terms are larger than the leading term. Figure 5 displays typical time series 
comparisons for subresonant conditions. The LO model gives an accurate prediction 
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FICCRE 6. Time traces from the speed probe for FR topography with 8 = 0.005 and 7 = 45.5 s 
( E  = 0.024) for ( a )  experiment. ( b )  \VXL model, (c) LO model. 

of the experimental results, while the WSL theory is very inaccurate. Figure 4 
indicates that as 7 is increased past the resonance peak the LO model begins to break 
down. Recall that  the LO model is valid a t  all r where the spatial truncation is 
realistic, but that  the WBL theory applies only near resonance. Figure 6 shows 
comparisons of time series at 7 = 45.5 s, where both models are only fair. The j = 1 
WNL prediction corresponding to the laboratory data in figure 6 ( a )  is very poor, but 
the ,8 = j = 2 WNL expansion (shown in figure 6 b )  does better since the second 
nonlinear resonance peak is close to 7 = 50 s. 

At larger 6, where S becomes bigger, the disparity between the two models grows. 
Figure 7 shows that the WNL theory now grossly overpredicts the observed speeds 
because 8; z 0.5 and the zonal correction !P2(y, p.7, &, S )  is itself huge. The LO model 
does well near t h e j  = 1 a n d j  = 2 resonance peaks ( t h e j  = 1 linear resonance is still 
a t  r = 34.7 s), but is not very good in the valley between the two peaks, nor at 7 
greater than about 42 s. Figure 8 displays experimental and LO model time traces 
just to the left of the second peak. The comparison is not nearly as favourable as that 
near the main subcritical peak at 20.4 s where S is substantially smaller (not shown; 
the traces are similar to those in figures 5u and 5 c ) .  
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FIGURE 9. Streak photographs for FB topography at forcing phase angle (a) -in, ( b )  -in, ( c )  0, 
(d)  &, ( e )  in, (f) n, for 8 = 0.02 and 7 = 20.0 s ( B  = 0.055) ; S = 0.052. The hills are on the left and 
right; the valleys at the top and bottom. In this and all subsequent streak photographs the basic 
rotation is clockwise. 

The reasons for the above behaviour are as follows. The WNL model fails for the 
FB cases because the parameters ,u and 6 are such that v 2  = Y,, is fairly large 
(typically around -20) and v2 = So z 0.2 is not sufficiently small to render a 
convergence series in (9). The LO model is better because the extra (last) term in (15) 
effectively limits the growth of the zonal flow correction by adjusting the wavefield, 
yielding amplitudes which are essentially in agreement with experiments. Both 
models use a truncation to a single spatial wave (WNL is asymptotic in this respect, 
LO ad hoc). Near the resonance peaks the motion will be dominated by the linearly 
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FIGURE 10. Streak photographs for FB topography at forcing phase angle (a )  -in, (b)  -in, (c) 0, 
( d )  an, ( e )  in, (f) R ,  for 8 = 0.02 and 7 = 50.0 s ( E  = 0.22); S = 0.32. The hills are on the left and 
right; the valleys at the top and bottom. 

resonant wave structure, and wave-wave self-interactions generate a large zonal 
flow. This zonal current advects the wave field (in both models), but for the 
substantial topography used here (with h, z 0.1) it also generates waves itself (in the 
LO model only). If the wave amplitudes are not too great, the sideband wave 
interactions are numerically small compared with the zonal-fundamental interaction 
contained in the LO model. Off-resonant conditions which arise as 7 ,  and hence S, are 
increased offer the possibility of stronger wave-wave interactions and the generation 
of spatial modes not included in the models. 
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FIGURE 1 1 .  Time traces for experiments at ,u2/[’ = 0.23 and [-3 = -0.30 (a, b )  and the WKL 
model at ,u2/cz = 0.23 and [-3 = -0.24 (c, d ) .  

Short-exposure time streak photographs support this latter idea. These were taken 
with an overhead CCD television camera viewing the upper free surface, which had 
been laced with aluminium powder flakes. The TV signal was fed into a MATROX 
image processing board attached to a personal computer. After thresholding to  
capture bright particles, successive frames coming in a t  a rate of 30 per s were OR’d 
together to  produce instantaneous streamlines. Each streak ‘exposure ’ time was 
small (typically 1 8 )  compared to the forcing period (typically 25 s or larger), so that 
the image gives an approximation to the instantaneous streamlines. Long-time 
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E 

FIGURE 12. Regime diagram for US and H ,  = 0.10. Chaotic time traces 
denoted by *, periodic ones by + . 

trajectories may be obtained by a similar method with a greater exposure time, 
except that  different surface floats must be used to prevent ‘winking ’ and guarantee 
continuity of the trajectories. Such long-time measurements are described in 55. In  
all the following streak photographs the basic rotation SZ, is clockwise (which we 
define as cyclonic). 

At T = 20 s (figure 9) the spatial structure is dominated by a pair of cyclonic 
vortices (over the valleys in figure 9 a )  and a pair of anticyclonic vortices (over the 
hills) which propagate first westward (counterclockwise, 9a ,  b )  then eastward 
(clockwise, figure 9c-e), weakening as the modulation reaches a minimum during a 
forcing cycle (figure 9e) .  Note that the flow is dominated by n = 2 waves throughout. 
At T = 50 s, as the rotation rate of the tank begins to increase, the spatial pattern is 
again dominated by two anticyclonic vortices moving westward (counter-clockwise) 
over the hill, along with two smaller anticyclonic vortices in the valley (figure 10a). 
As in figure 9 ( b ) ,  when the tank reaches its greatest rotation rate, the two 
anticyclonic vortices begin to shrink in size and are pushed inwards leaving the two 
cyclonic vortices over the valleys (figure lob,  c ) .  When the rotation rate begins to 
decrease the parts of the two cyclonic eddies that have extended over the top of the 
hills pinch-off and form four cyclonic vortices sitting at about r = 8 (figure 10d) .  This 
pattern of four cyclonic vortices requires a term with n = 4 in the spatial spectral 
expansion, which is absent from the models. As the rotation rate further decreases, 
the two anticyclonic eddies move outwards and grow (figure lOe), until a pattern 
approaching the initial one is attained (figure lOf) .  This sequence shows that as S 
increases the models break down because the wavenumber-4 component of the 
motion becomes significant. 

An attempt was made to find the multiple equilibrium solutions predicted by the 
WNL model. We have not determined the entire domain of multiple states because 
this is a hard task experimentally. The dual requirement of being within or near the 
predicted ‘triangle ’ of multiple states, and simultaneously having parameters Si, p 
and 5 such that the weakly nonlinear expansion is reasonably accurate is difficult to 
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FIGURE 13. Streak photographs for US topography with H ,  = 0.1 at forcing phase angle ( a )  0, (6) 
$, (c) 6, and ( d )  in. (e) Experimental time trace for 6 = 0.05 and 7 = 20.0 s ( E  = 0.055). The top of 
the hill is on the left-hand side of each picture, the valley on the right, and the basic rotation is 
clockwise. 

satisfy over a range of conditions broad enough to pass from one state to the other 
in small well-controlled steps. Therefore we are constrained to sit in a narrow band 
of parameters and make many runs from different random initial conditions, looking 
for different end states. Figure 11 shows two experimental time series of flow speed 
for two different runs a t  the same external parameters ,u2/g2 = 0.23 and 5-3 = -0.30, 
with US topography and H ,  = 0.05. The WNL theory does reasonably well a t  
predicting these waveforms for its two stable equilibria, as comparisons between 
figures 11 (a ,  b )  and 11 ( c ,  d )  show. The multiple states were found experimentally in 
a slim band of 5-3 values that are slightly more negative than the narrow range 
predicted by theory at this value of ,u2/c2. Thus the model predictions are given for 
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FIGURE 14. Streak photographs for US topography and H ,  = 0.1 at forcing phase angle (a) -$in, 
and ( b )  $in. (c) Experimental time trace with 6 = 0.050 and T = 22.2 s ( E  = 0.049). The hill is on the 
left-hand side. 

E-3 = -0.24, which is a t  the centre of a range for multiple equilibria that is 
approximately 0.02 units wide and centred on Ee3 = -0.24, for the same value of 
p''l(z = 0.23 that was used in the experiments. 

4. Transition to chaotic flow 
As 6 increases and r decreases the time series obtained from the thermistor probe 

eventually become non-periodic, as evidenced by a broadening of the spectral peaks 
in a Fourier transform of the data. Figure 12 shows the region of the (6, €)-parameter 
plane where Eulerian chaos occurs for the uniform slope topography of amplitude 
1 cm, with other parameters fixed in accord with the data in table 1 .  Using 
simultaneous thermistor probe data and overhead streak photography it is possible 
to identify the flow structures responsible for the loss of periodicity in the motion. 
Figure 13 displays the flows associated with a periodic point on the regime diagram 
at moderately large 6. The oscillatory time series is generated by a wavenumber-1 
disturbance that is superimposed on a strong zonal current in figures 13(a) and 
13(c), which weakens in figure 13(b) and 13(d) where the topographically forced 
wavenumber 1 vortex dipole is more evident. At just slightly larger forcing period 
(smaller E ) ,  the periodic signal becomes chaotic. Associated with this is a smaller scale 
eddy which is born in the sidewall boundary layer when the rotation rate is 
increasing (figure 14a), and which subsequently propagates westward and then out 
into the interior (figure 146). During the following eastward (clockwise) sloshing 
phase the 'wall-eddy' can either dissipate in the interior or be reabsorbed into the 
sidewall boundary layer, depending on the values of the external parameters. 
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FIGURE 15. Streak photographs for US topography and H ,  = 0.1 at forcing phase angle ( a )  -in, 
( b )  -in, (c) x ,  and ( d )  #n. (e) Experimental time trace for S = 0.050 and 7 = 50.0 s ( B  = 0.040). The 
hill is on the left-hand side and the basic rotation is clockwise. 

Further into the chaotic regime a series of wall eddies can be born and mixed into 
the interior, leading to a more aperiodic time series (figure 15). A similar transition 
process occurs a t  lower 6, where the boundary-layer vortex generation and shedding 
appears to cutoff sharply as 6 is decreased. This is illustrated in figure 16 which again 
shows the small-scale eddy characteristic of the chaotic regime for 6 = 0.022, with 
smooth boundary layers for 6 = 0.020. 

The situation for the F B  topography is essentially the same. Figure 17 gives the 
regime diagram. Chaos occurs a t  low Rossby number 6 based on frequency, which 
corresponds to a large topographic forcing parameter S (see table l ) ,  and a t  large flow 
Rossby number 6. The bounding curve is nearly a t  constant S. This may or may not 
be dynamically significant because other parameters (p, 7,  Q ,  E L )  are varying along 
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(b) 

FIGURE 16. Streak photographs for US topography and H, = 0.1 at forcing phase angle (a) @, 
( b )  in, and (c) n, for S = 0.022, and ( d )  II for 8 = 0.020 with 7 = 27.8 ( E  = 0.040). The hill is on the 
left-hand side of each picture. 
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FIGURE 17. Experimental regime diagram for FB topography. Chaotic time traces 
denoted by *, periodic ones by +. 

E 

isolines of S. Typically, as the rotation rate of the tank begins to increase from its 
smallest value, wall eddies are formed in the boundary layer on the eastern sides of 
the valleys, near the larger interior cyclonic vortices which were present at similar 
forcing phases in the periodic cases. The wall eddies propagate westward (figure 186), 
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F I G ~ R E  18. Streak photographs for FB topography at forcing phase angle (a) -in, ( b )  0, (c) n and 
( d )  experimental time trace with 6 = 0.05 and 7 = 50.0 s ( E  = 0.022). The hills are on the left and 
right ; the valleys on the top and bottom. 

break loose from the boundary and again cause rather violent perturbations to the 
interior motions (figure 18c). 

5. Parcel trajectories 
In this section we compare model Poincarg sections with experimental ones. The 

former are generated by first solving (14)-( 16) numerically. After a statistically 
stationary solution is obtained, the particle path equations are integrated 
simultancously for several test particles. The path equations form a 1;-degree-of- 
freedom nonlinear Hamiltonian system given by 

(20) 
dr 
- = u = n[Y(t)  cos (no) - X ( t )  sin (no)] J,(oI,, r ) .  
dt 

where the stream function Y(r.  8 ,  t )  serves as the Hamiltonian. 
Experimental trajectories are obtained by OR'ing together many forcing cycles of 

successive overhead video pictures of surface floats. Two float types were used : small 
0.25 em diameter vinyl discs that adhere to the surface via tension, and soggy cork 
discs whose topsides remain a t  the surface but whose bulk is underwater like an 
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FIGURE 19. Trajectories for FB topography at S = 0.009 and (a) 7 = 17.5 s, (b)  7 = 22.2 s, and (c) 
7 = 40.0 s. The time of exposure is different for each. Thin lines show static thickness contours (hills 
at left and right). The basic rotation is clockwise. 

iceberg. Equivalent data were obtained for each, suggesting an absence of surface- 
tension effects on the floats. Direct Poincare' sections were obtained by looking a t  a 
few floats over hundreds of forcing cycles. At a fixed phase of each forcing cycle a 
single video frame was taken and OR'd with a buffer containing all previous strobed 
frames. The final image then represents the ( r ,  8)-positions of vertical fluid columns 
during successive phases a+2kn  ( k  = 0,  1 , 2 , .  . .) of the forcing. 

Figure 19 shows a typical example of the experimental parcel trajectories, which 
can be periodic or chaotic. In  these examples the Eulerian flow is always periodic, but 
near the flow resonance the trajectories are chaotic (figure 19b).  The orbits drift in 
the retrograde (counter-clockwise) sense, as one would expect from the presence of 
the substantial negative mean zonal current predicted by the theories. The drifts 
tend to follow isobaths. If relative vorticity were much smaller than potential 
vorticity, this would be expected from conservatism of 252, / (0  + h - hb) following 
fluid columns when friction is small. Here the isobath tracking is only approximate 
as relative vorticities are not negligible. 

Experimental and theoretical Poincark sections are shown in figure 20. The 
qualitative interpretation of the sections does not depend on the triggering phase 
angle a. Different values only serve to  rotate and deform slightly the major features 
(e.g. compare figures 10a and ~ O C ) ,  as the maps are differentially equivalent. At 
parameter values where the LO model gives a good description of the flow, the 
associated theoretical Poincar6 sections compare well with the data. Figure 2 1 
addresses a case where the Eulerian flow is a very stable limit cycle (see figure 17).  
The chaotic and periodic parts of the Poincark sections are well predicted by 
(14)-(21) .  The chaotic behaviour has expanded from the hyperbolic fixed points in 
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FIGURE 20. Poincar6 sections with the FB topography for 6 = 0.010 and 7 = 17.5 s (6  = 0.063) 
at forcing phase angles: ( a )  0 (experimental), ( b )  0 (LO model), and (c) n (experimental). 

FIGURE 21. Poincark sections with the FB topography for 6 = 0.005 and r = 21.7 s (8 = 0.051) 
at forcing phase angle zero: (a) experimental, ( b )  LO model. 
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FIGURE 22. Poincart! sections with the FB topography for 6 = 0.010 and 7 = 30.3 s ( E  = 0.036) 
at forcing phase angle zero: (a)  experimental, ( b )  LO model. 

FIGURE 23. PoincarB sections (experimental) with the FB topography for (a )  52, = 1.40 rad/s, 
6 = 0.10 and 7 = 58.8 s ( E  = 0.038), and (b )  a, = 2.85 rad/s, 6 = 0.050 and 7 = 50.0 s (e = 0.022). 

the interior over the hills to fill a substantial area bounded by close KAM curves 
where periodic orbits are found. The KAM curves isolate the chaotic trajectories in 
the interior from those with a more regular behaviour out over the valleys. Mixing 
across these boundaries is not observed. In the outer valleys the particle paths are 
mostly periodic, with small areas of chaos near the hyperbolic fixed points that lie on 
the wall. 

The next example (figure 22) is for another stable periodic Eulerian flow. Here, 
however, the LO model does not work as well as in figure 21 because the parameter 
point lies between the resonances where multiple spatial modes are found (see figure 
7) .  6 has increased and the area of Lagrangian chaos has expanded, but the theory, 
now based on an incorrect Eulerian velocity field, is almost everywhere regular. 
When the experimental parameters are finally pushed into the region of Eulerian 
chaos (shown in figure 17)) the wall eddies cause a mixing of fluid parcels initially 
near the outer wall into the interior. Then the last stable islands near the rim in 
figures 22 and 21 are destroyed, yielding completely chaotic sections as illustrated in 
figure 23. Here the LO model also predicts area-covering chaos, but this is only due 
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FIGURE 24. Regime diagram for experimental Poincare' sections with FB topography. 
SI, stable islands; CC, confined chaos; GC, global chaos. 
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to the overly large amplitudes of the periodic Eulerian flow that i t  gives for these 
highly nonlinear parameter settings where both 6 and Si are large. 

The Poincare' section data are summarized in figure 24. The states SI refer to 
situations where less than 10% of the tank surface is occupied by chaotic regions a t  
phase angle zero, the rest is filled with stable islands (i.e. closed KAM curves 
signifying quasi-periodic motion). Globally chaotic states (GC) have less than about 
10 YO of the tank occupied by quasi-periodic particle paths. Confined chaotic states 
(CC) lie in between these two extremes. This rather rough attempt a t  a qualitative 
characterization serves to illustrate the points that (i) periodic flows can be 
accompanied by localized chaotic parcel trajectories, and (ii) that globally chaotic 
fluid paths are observed precisely for those parameter values where the Eulerian field 
itself is chaotic due to  the presence of wall eddies. 

6.  Conclusions 
We have reported laboratory experimental observations on periodically forced 

flow over topography in a rotating cylinder. The results permit some comparisons 
with weakly nonlinear and low-order models in this situation, and provide interesting 
data in strongly forced regimes that we hope will stimulate further theoretical and 
numerical studies. The weakly nonlinear model captures the main qualitative 
features of the observed flow. It predicts the observed shifting of the peak response 
or resonance from the linear value to  supercritical values of the forcing period for 
topography with wavenumber n = 1, and to subcritical values for topography with 
wavenumber n = 2. It forecasts a retrograde time-mean zonal current produced by 
wave self-interactions, and predicts the presence of multiple equilibria. Both of these 
signatures of the WNL model were observed experimentally. This model gives useful 
quantitative predictions when the expansion parameter S is small enough that the 
predicted retrograde flow (of order Si x YZr(&, p, 7, S, r ) )  is much smaller than the 
basic sloshing motion (of order 6 / ~ ) .  If the parameters are pushed beyond what might 
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normally be expected for validity of a weakly nonlinear theory, the retrograde mcan 
motion eventually swamps the rest of the solution. Because there is no interaction 
between this large retrograde flow and the topography, the weakly nonlinear theory 
then fails. 

A low-order model which includes the interaction of the wave-generated zonal 
currents with the topography was introduced and was shown to work reasonably well 
when the spatial structures included in the truncation are dominant in the observed 
field. This is the case when the forcing 6 and frequency Rossby number E are such that 
(i) the Eulerian flow is periodic, and (ii) the system is near the primary nonlinear 
resonance a t  small to modest 6 and Si. Interesting circumstances have been studied 
theoretically where more than one spatial mode can be simultaneously resonant 
(Jones 1989). However, such cases do not commonly occur with the single-mode or 
uniform-slope topographies studied here. 

Chaotic Eulerian flows are found in the experiments as the frequency Rossby 
number E is decreased and the forcing amplitude 6 is increased. They are associated 
with wall eddies that arise in the sidewall boundary layer a t  one phase during the 
forcing cycle and then propagate into the interior in an erratic manner. The 
transition between periodic and chaotic flows is quite sharp and with our current 
apparatus we have been unable to isolate a purely periodic or quasi-periodic wall- 
eddy flow. The two theories discussed here do not reproduce this phenomenon as they 
have limited spatial representation and no rigid outer wall. The dynamical 
mechanism for the generation of the wall eddies is not obvious. Experiments with a 
flat bottom show no tendency for such phenomena (i.e. S: has to be fairly big for i t  
to occur). This suggests that pressure gradients along the wall due to interior- 
boundary interactions in the presence of interior topography may be important. 
Such pressure gradients can lead to boundary-layer separation. The regime diagrams 
presented here may be useful for theoretical or numerical modelling of this process. 

Finally, expcrimental Poincare' sections show complex folding and stretching of 
fluid parcels for periodic Eulerian flows. Such situations are successfully modelled by 
integrations of the trajectory equations using the predicted (and periodic) motion 
fields from the low-order theory, provided the parameters are set to values for which 
the low-order model itself is reasonably accurate. Complete mixing over the entire 
experiment appears to  occur only when the Eulerian flow becomes chaotic with wall 
eddies that carry boundary fluid into the centre of the tank. 

The authors thank the National Science Foundation for support of this research 
under grant OCE-8918589 to the University of Colorado. 
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